
IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 10, OCTOBER 1989 1447

Correspondence

A Systematic Design of Cellular Permutation Arrays

A. YAVUZ ORUC AND AJAI THIRUMALAI

Abstract-This paper presents a parametrized design technique for
cellular permutation arrays based on coset decompositions of symmetric
groups. A new type of permutation cell, referred to as a coset generator,
is introduced to customize the propagation delay, fan-in, fan-out, and
number of edges in the target network. To aid in the design process, a cost
function is derived expressing the number of edges in terms of the number
of inputs and the sizes of cells. The results provide a spectrum of
networks which vary with the size of the coset generator used, and range
from a simple bipartite graph to several cellular permutation arrays
reported in the literature.

Index Terms-Cellular permutation array, coset generator, hexagonal
cells, rearrangeable network, symmetric group.

I. INTRODUCTION
This paper extends upon the cellular permutation arrays which

were described in [5] and [61. Group theory was used in these efforts
to generalize the cellular permutation arrays of Kautz et al. [4]. It was
also shown in [7] and [8] that these networks can be programmed in
O(n) steps. A further generalization of these networks will be
presented here by proving stronger results on coset decompositions of
symmetric groups.

In geometrical terms, designing a cellular permutation array
amounts to forming one- or two-dimensional arrays of polygonal
permutation cells each of which has some or all of its sides abutted
against another polygonal cell so that the combined structure can
realize the set of all permutations from a set of sides on its boundary
identified as inputs to another set of sides of equal cardinality also on
its boundary and identified as outputs. Whether it is designed as a
cellular array or not, a network which can realize the set of all
permutations of its inputs onto its outputs is called rearrangeable and
finds applications in circuit switching [IO] and parallel processing
[3], [9]. In addition to being rearrangeable, the networks considered
in this paper will also be cellular.

In general, one- or two-dimensional cellular permutation arrays
can be constructed by using any number and type of polygonal cells if
not all the sides of polygons are required to be abutted against the
sides of other identical cells. On the other hand, it is easily shown
that two-dimensional cellular permutation arrays using polygonal
cells any of which has each of its sides abutted against another
identical cell can be constructed by using only three types of
polygons, namely those with three, four, or five sides. Cellular
permutation arrays with four-sided polygons, or square cells, have
been extensively studied in the literature [4]-[6]. It should be easy to
see that to each cellular permutation array with square cells there
corresponds a cellular permutation array with three-sided polygons,
or triangular cells. It can also be shown that a cellular permutation
array which uses triangular cells can be converted to a cellular

Manuscript received February 27, 1987; revised October 20, 1987.
A. Y. Oruc is with the Department of Electrical Engineering, University of

A. Thirumalai is with Digital Equipment Corporation, Marlborough, MA

IEEE Log Number 8927544.

Maryland, College Park, MD 20742.

01752.

1

2

3

4

I I I I +
1 2 3 4

(a)

I
t
4

t
3

+
2

+
1

(b)

4-input triangular cellular arrays with triangular and square cells. (a)
A 4-input triangular permutation array constructed with triangular cells. (b)
A 4-input triangular permutation array constructed with square cells.

Fig. 1.

permutation array with square cells by a simple augmentation of its
cells on its boundaries. Fig. 1 depicts two four-input triangular-
shaped cellular permutation arrays, one constructed with triangular
cells and the other with square cells. In general, we need n 2 triangular
cells and n(n - 1)/2 square cells to construct an n-input triangular
permutation array which is easily shown to be rearrangeable.

One way to construct a cellular permutation array with hexagonal
cells is to use a triangular geometry as shown in Fig. 2(a). The first
two inputs are tied to the network through the hexagonal cell on the
left, and afterwards a new input enters the network from left to right
per each column of hexagonal cells. In general, an n-input triangular
permutation array can be constructed by using (n2 - 4)/4 cells if n is
even and n 2 4, and (n2 - 5)/4 if n is odd and n 2 3. If we assume
that each cell has full connectivity, that is, each of its inputs is
connected to each of its outputs as shown in Fig. 2@), then it is
obvious that the first cell can permute its inputs to its outputs in any
one of 3! = 6 ways. Furthermore, if we suppose that the first n
columns of cells can permute the first n + 2 inputs to the n + 2
outputs in any one of (n + 2)! ways, it immediately follows from the

0018-9340/89/1000-1447$01.OO 0 1989 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1448

4 ti

1 1

2
3

4

5
6

2

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 10, OCTOBER

n-1 n-2 2 1

1989

t
7

(b)

hexagonal cellular array. (b) The basic cell structure.
Fig. 2. A 7-input triangular array with hexagonal cells. (a) A 7 -input

construction that the first n + 1 columns can permute the first n + 3
inputs onto the n + 3 outputs in any one of (n + 3)! ways.

Summarizing the preceding discussion we have the following.
Theorem 1: Every triangular cellular array constructed using

triangular, square, or hexagonal cells as in Figs. 1 and 2 is

The question that remains is to determine what other cellular
geometries of triangular, square, and hexagonal cells also lead to
rearrangeable networks. More generally, we need to resolve if
cellular permutation arrays can be designed more systematically
These two questions are handled in the following sections.

11. APPROACH

rearrangeable. I1

In general, permutation networks are built from smaller permuta-
tion networks which are built from still smaller permutation
networks, etc. In order to mechanize this recursive process in the case
of cellular permutation arrays, we will use the coset decomposition
technique introduced in [6]. Let N be a finite set of elements which
designate the inputs and outputs of a permutation network. The set of
all permutations on N forms the symmetric group of degree IN1
which will be denoted by C, where n = INI, and the network will be
said to be rearrangeable if it realizes all of C,. Without loss of
genera l i tyweshal l le tN= { 1 , 2 , .*.,n}.

The design technique is based on decomposing C, into right (or
left) cosets of another symmetric group C, in C, where C, is defined
over { 1, 2, . . e , m } ; m 5 n . A right coset of C, in C, is a set of
permutations C;p = { cr.p:cr E E,} where p is an arbitrary but
fixed element in C,, and called the leader of the coset. A feft coset is
defined by interchanging the order of C, and p in the product C, ' p .
Since the statements about right cosets directly extend to those about
left cosets, we shall limit our discussion to right cosets.

Our first remark is that two right cosets are either identical or
disjoint. This fact provides the basis for decomposing C, into the
cosets of 8,. More specifically, we have the following fact [6].

Theorem 2: Any two permutations in C, lie in different right
cosets of C, in X, if and only if they map at least one symbol in { m
+ 1, m + 2, * e , n } onto different symbols in N.

Example: Let n = 6 and m = 5. The symmetric groups C6 and C5
are then defined, respectively, over { 1 , 2 , 3 , 4 , 5 , 6 } and { 1 , 2 , 3 , 4 ,
5). The permutation maps

II

. = (I 2 3 4 5 6)
3 4 5 6 2 1

n-1

(a)

n-1 n-2 2 1

1

n-1 n-2 2 1

(b)

input cells.
Fig. 3. Generating C, from En-,. (a) By using 2-input cells. (b) By using 3-

and

1 2 3 4 5 6
6 1 3 4 5 2

belong to different cosets of C5 since 6 is mapped to 1 by p and to 2 by
q, i.e., to different outputs. Note that there are exactly six distinct
right cosets of C5 in C6 as 6 can be mapped at most to six different
places in { 1, 2, * * , 6) . Also note that the cosets are distinguished
only by where input 6 is mapped to, and they do not depend on how
the images of 1 , 2 , 3 , 4 , 5 are fixed by the permutations which belong
to a given coset. These six cosets of C5 collectively sum to C6. 11

The following theorem is easily proved by induction.
Theorem 3: The total number of distinct right cosets of C, - I in C,

is n, and that for C, in 1, is n(n - 1) . . . (m + 1).
Fig. 3 depicts the realization of C, by the right cosets of C, - with

2-input and 3-input switching cells. Since input n can be mapped onto
any one of the n outputs through the small circular cells, all the right
cosets of in C, can be realized by each of the networks. By
applying this decomposition recursively upon E,- ,, C, - 2 , etc., we
can realize C, as a cellular permutation array consisting of 2 x 2 or 3
X 3 cells [5], [6]. For example, the networks shown in Fig. 1 can be
obtained by recursively decomposing the network in Fig. 3(a) and
that in Fig. 2 can be obtained by recursively decomposing the
network in Fig. 3(b). The only remark that needs to be made is that
the hexagonal cells, except the one to which the first two inputs are
tied in Fig. 2 , need not be fully connected as stated in Section I.
Following the edge specification in Fig. 3(b), Fig. 4 shows the edges
needed. The leftmost cell requires full connectivity and hence needs

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 10, OCTOBER 1989 1449

1

2

4 6

I
I

3 2-+J5J-[x5 !

1 1 2 3 4 5 7
(a)

Fig. 4. A 7-input cellular array with specified cell connections.
1

n-2 n 3 2 1

2

n n
ll-1 ll-1

n-2 2 1

Fig. 5. Generating C, from En-*,

all nine edges. The cells on the top row have only two inputs and
hence require four edges each. All other cells have the functionality
of the small circular cells in Fig. 2(b) and each needs seven edges.

Using these figures, the total number of edges in an n-input array
can be shown to be

7 (?)-3 (?)+2whenn i seven

and

7 (?)-3 (?)+2whenn i sodd . (1)

We can use the same technique to design other cellular permutation
arrays with hexagonal cells. As another example, suppose we use the
right cosets of Cn-2 to decompose C,. The resultant network then
consists of two stages where the first stage is assumed to realize all of
Cn-2 and the second stage generates the n (n - 1) right cosets of C, -2

in E,. The second stage can be realized by a set of 3-input cells as
shown in Fig. 5 . The connections for the small circular cells are
designed to provide inputs n and n - 1 with paths to any two of the
outputs with the desired order. At the same time, all the remaining
inputs can be permuted among themselves by the Z,_z network in the
first stage, and any of them can be mapped to either of outputs n and
n - 1 via the small circular cells. It follows that the entire structure
realizes C,.

Cellular arrays which result from this kind of decomposition are
shown in Fig. 6. The number of edges in an n-input network
constructed this way can be shown to be

n(n-2) n
2

+ 3 -+ 1 when n is even 6 -
4

-7

-8

t
6

t
2 3 4 5

(b)

is even.

t
1

Fig. 6. Recursive realization of 8. using hexagonal cells. (a) n is odd. (b) n

and

(n ~ - 2 n + 2) + ~ ('J')
__ when n is odd.

4 (3)

111. PERMUTATION NETWORKS BASED COSET GENERATORS
In the preceding section, we formed two cellular permutation

arrays of hexagonal cells using the decompositions of C, into the right
cosets of C,-1 and Cn-2 . By direct comparison of the numbers of
edges in the two networks, it is clear that the decomposition with
En-* has led to fewer directed edges. This fact raises the question
whether we can reduce the number of edges even further by working
with symmetric groups such as e.., etc. Another
question that should also be raised is about the geometry of the cells
used in the construction of cellular permutation arrays. There is no
reason why one should limit the geometry to hexagonal cells, and
other forms of cells should also be investigated in connection with
reducing the total number of edges in the network.

These two degrees of freedom in decomposing C, bring us to the
concept of what we shall call a generalized mixer or coset
generator. Consider the right cosets of C, in E,, , and let k = n - m.
We can view the generation of these cosets as mixing some k new
inputs with some m old inputs in a way to realize if a network is
given to permute the m inputs in any one of m! ways. The schematic
in Fig. 7 illustrates this concept where the top network realizes C, and
the bottom one generates all of its right cosets.

In order to describe the realization of C, by a two-stage network,
we must specify the edges inside the coset generator. First note that
an edge is needed between every horizontal input and every output of
the coset generator, since lacking any such edge will prevent the
realization of some (n - l)! permutations. Since there are k
horizontal inputs and m + k outputs, this requires a total of (m +
k)k edges as depicted in Fig. 8.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1450 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 10, OCTOBER 1989

1 2 m

t t e. .
I t ,

m+ 1
m+2 Coset Generator

n n =:: 774 1 2 e. . m

Fig. 7. Realization of C, by a two-stage permutation network.

1 m

J .. . 1
=m

I .. .
m+l m+l

m+k m+k

.. . 1
m

Fig. 8. The edges in the coset generator of a two-stage permutation network.

As for the vertical inputs it is easy to see that each vertical input of
the coset generator must be connected to at least k + 1 outputs since
otherwise we can define a permutation that can block that input from
being connected to any output by mapping a subset of k horizontal
inputs to wherever that input is connected. This then implies that the
combined structure is not rearrangeable. Furthermore, it can also be
shown that k + 1 edges per each vertical input suffice to make the
overall network rearrangeable [SI. These k + 1 edges can be
connected as shown in Fig. 8 among other ways.

It follows that we need to have (m + k)k + (k + l)m edges in all
for the coset generator. Substituting n - k for m , the total number of
edges can be expressed as

2kn + n - k - k Z . (4)

We can use this expression to minimize the total number of edges
in a cellular permutation array obtained by recursively decomposing a
two-stage permutation network. Let c n , k denote the number of edges
in such a cellular permutation array. Using (4), we can write the
recurrent equation

C n , k = n(2 k + 1) - k2 - k + c n - k , k (5)

where c n - k , k is the number of edges in the C, or & - k network.
Repeating the same decomposition recursively, i.e., decomposing

into & - 2 k and that into & -) k , etc., it can be shown that

where a is the depth of recursion, and C n - t i k , k is the number of edges
in the & - a k subnetwork which is left undecomposed. It can further
be shown that this recursion has the following closed form solution
for the boundary condition c k , k = k2 , i.e., a = n /k - 1 :

If we define the propagation delay P n , k of a network as the length of
the longest path between its inputs and outputs then

n
k ’ (8) P n , k = + 1 = -

It also follows from the construction of the coset generator that the
fan-out Fn,k is given by

F,,,=k+l (9)

for all vertical inputs and

F n , k = n - (i - 1)k (10)

for all horizontal inputs of the coset generator in decomposition level
i ; 1 5 i 5 n /k .

These results lead to the following statement.
Theorem 4: In a cellular permutation array which is recursively

obtained from a two-stage network with k horizontal inputs, C n , k ,

P n , k , and fan-out for horizontal inputs decrease with increasing
values of k while the fan-out for vertical inputs increases with the
increasing values of k . II

Iv. ANALYSIS OF RESULTS
To provide a concrete comparison of cellular arrays, we list in

Table I the total number of edges, propagation delay, and fan-out for
various cellular permutation arrays described in the paper and the
networks of Kautz et al. [4] and Bandyopadhyay et al. [l],
abbreviated, respectively, as KLW and BBC networks. While the
first six rows refer to specific networks, the last three rows depict
only a few of many cellular arrays which can be formed by using
coset generators. In particular, the entries in the last row correspond
to a complete bipartite graph realization of E,.

The table reveals that all of the listed networks have O(n2) edges
although the number of edges decreases as k increases as stated in
Theorem 4 and reaches its minimum value at k = n. This may appear
to be counterintuitive at first since the decomposition in many other

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. IO, OCTOBER 1989 1451

TABLE I
NUMBER OF EDGES FOR VARIOUS CELLULAR NETWORKS

network designs including the Benes network [2] is a common
method of reducing the network’s cost. The reason for this anomally
is that the cosets are not optimally coded into the coset generators in
that all the required connections between the inputs and outputs are
specified in terms of direct edges. In order to reduce the edge count,
one needs to code coset leaders so as to maximize the number of
edges shared between different cosets. The treatment of this coding
problem will be deferred to another place.

In contrast, the tradeoff between P n , k and F n , k is more noticeable:
cellular permutation arrays constructed with small cells have O(1)
fan-out and O(n) propagation delay while those constructed with
large coset generators have O(n) fan-out but O(1) propagation delay.
This tradeoff is also more intuitive even though the O(n) propagation
delay for constant fan-out is not necessarily the best possible. In
principle, one can construct networks with O(log2 n) propagation
delay by using switching cells with O(1) fan-out. Nonetheless, this
construction shares the same goal with our approach in that one uses
decomposition which causes the propagation delay to increase from
O(1) to O(log2 n) (rather than O(n) in our case) to reduce the fan-out
from O(n) to O(1). It seems that one can also achieve O(log2 n)
propagation delay with our coset decomposition technique by using a
more compact coding for the coset leaders. As stated earlier, the
possibility of such a coding will be explored elsewhere.

V. CONCLUDING REMARKS

This paper presented a technique for customizing the design of
cellular permutation networks. It has been shown that there exists a
rich spectrum of cellular permutation arrays which results from
recursive coset decompositions of symmetric groups. Cellular per-
mutation arrays constructed from 2 x 2 cells and the bipartite graphs
have been shown to populate the two extreme ends of this spectrum.
In particular, the bipartite graph realization of the set of all
permutations is shown to outperform any cellular permutation array
in number of edges, as well as in propagation delay. Nonetheless its
O(n) fan-out may be intolerable for large n. In this case, the coset
decomposition technique can be used to systematically trade the fan-
out with the propagation delay.

REFERENCES

S. Bandyopadhyay, S. Basu, and K. Choudhury, “A cellular permuter
array,” IEEE Trans. Comput., vol. C-21, pp. 1116-1119, Oct. 1972.
V. E. Benes, Mathematical Theory of Connecting Networks and
Telephone Traffic.
T. Feng, “A survey of interconnection networks,” IEEE Computer
Mag., vol. 14, pp. 12-27, Dec. 1981.
W. H. Kautz et al., “Cellular interconnection arrays,” IEEE Trans.
Comput., vol. C-17, pp. 443-451, May 1968.
S. A. Nadkami, “The design and performance evaluation of hybrid
cellular interconnection arrays,” M.Sc. thesis, Rensselaer Polytechnic
Institute, Troy, NY, Aug. 1985.
A. Y. Oruq, “Designing cellular permutation networks through coset
decompositions of symmetric groups,” J. Parallel Distrib. Comput.,
pp. 30-45, Aug. 1987.

New York: Academic, 1965.

171 A. Y. Oruc and M. Y. Oruc, “Linear-time algorithms for program-
ming cellular permutation arrays,” in Proc. ACM Nut. Comput. Sei.
Conf., Cincinnati, OH, 1986, pp. 129-136.

[8] A. Y. Oruc and S. Schneider, “Coset networks for parallel proces-
sors,” J. Supercomput., pp. 23-39, 1989.

[9] H. J. Siegel, Interconnection Networks for Large-scale Parallel
Processing: Theory and Case Studies. Lexington, MA: Lexington
Books.
K. J. Thurber, “Circuit switching technology: A state of the art
survey,’’ in Conf. Proc.-Compcon 1978 Fall Conf., Sept. 1978,

[lo]

pp. 116-124.

On Systolic Contractions of Program Graphs

WEICHENG SHEN AND A. YAVUZ ORUC

Abstract-One of the active areas in supercomputer research is
concerned with mapping programs onto networks of processors. In this
paper, a variant of the mapping problem, namely, systolic contractions of
program graphs are considered. The notion of time links is introduced to
mechanize the contraction process; the timing of information flow
between processors is modeled in terms of fundamental loop and path
equations of delays, and optimized using linear programming.

Index Terms-Fundamental loops of delays, graph contraction, proc-
essor graph, program graph, systolic array, time links.

I. INTRODUCTION

An active area in supercomputing research is concerned with
designing systematic procedures for mapping algebraic computations
onto networks of processors. Significant results have been reported in
the literature, especially about mapping matrix computations onto a
family of processor networks collectively referred to as systok
arrays [I]-[4]. These arrays prompted a considerable interest due to
their regular structures, adjacency of interconnections between their
processors, and simplicity of their control.

Previous efforts on mapping algorithms onto systolic arrays deal

Manuscript received February 18, 1987; revised December 23, 1987. This
work was supported in part by the Department of Electrical, Computer, and
System Engineering, Rensselaer Polytechnic Institute.

W. Shen is with the Department of Electrical Engineering, University of
New Hampshire, Durham, NH 03824.

A. Y. ONC, is with the Department of Electrical Engineering, University of
Maryland, College Park, MD 20742.

IEEE Log Number 8927545.

0018-9340/89/1000-1451$01.~ 0 1989 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

