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Correspondence 

A Systematic Design of Cellular Permutation Arrays 

A. YAVUZ ORUC AND AJAI THIRUMALAI 

Abstract-This paper presents a parametrized design technique for 
cellular permutation arrays based on coset decompositions of symmetric 
groups. A new type of permutation cell, referred to as a coset generator, 
is introduced to customize the propagation delay, fan-in, fan-out, and 
number of edges in the target network. To aid in the design process, a cost 
function is derived expressing the number of edges in terms of the number 
of inputs and the sizes of cells. The results provide a spectrum of 
networks which vary with the size of the coset generator used, and range 
from a simple bipartite graph to several cellular permutation arrays 
reported in the literature. 

Index Terms-Cellular permutation array, coset generator, hexagonal 
cells, rearrangeable network, symmetric group. 

I. INTRODUCTION 
This paper extends upon the cellular permutation arrays which 

were described in [5] and [61. Group theory was used in these efforts 
to generalize the cellular permutation arrays of Kautz et al. [4]. It was 
also shown in [7] and [8] that these networks can be programmed in 
O(n) steps. A further generalization of these networks will be 
presented here by proving stronger results on coset decompositions of 
symmetric groups. 

In geometrical terms, designing a cellular permutation array 
amounts to forming one- or two-dimensional arrays of polygonal 
permutation cells each of which has some or all of its sides abutted 
against another polygonal cell so that the combined structure can 
realize the set of all permutations from a set of sides on its boundary 
identified as inputs to another set of sides of equal cardinality also on 
its boundary and identified as outputs. Whether it is designed as a 
cellular array or not, a network which can realize the set of all 
permutations of its inputs onto its outputs is called rearrangeable and 
finds applications in circuit switching [IO] and parallel processing 
[3], [9]. In addition to being rearrangeable, the networks considered 
in this paper will also be cellular. 

In general, one- or two-dimensional cellular permutation arrays 
can be constructed by using any number and type of polygonal cells if 
not all the sides of polygons are required to be abutted against the 
sides of other identical cells. On the other hand, it is easily shown 
that two-dimensional cellular permutation arrays using polygonal 
cells any of which has each of its sides abutted against another 
identical cell can be constructed by using only three types of 
polygons, namely those with three, four, or five sides. Cellular 
permutation arrays with four-sided polygons, or square cells, have 
been extensively studied in the literature [4]-[6]. It should be easy to 
see that to each cellular permutation array with square cells there 
corresponds a cellular permutation array with three-sided polygons, 
or triangular cells. It can also be shown that a cellular permutation 
array which uses triangular cells can be converted to a cellular 
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4-input triangular cellular arrays with triangular and square cells. (a) 
A 4-input triangular permutation array constructed with triangular cells. (b) 
A 4-input triangular permutation array constructed with square cells. 

Fig. 1. 

permutation array with square cells by a simple augmentation of its 
cells on its boundaries. Fig. 1 depicts two four-input triangular- 
shaped cellular permutation arrays, one constructed with triangular 
cells and the other with square cells. In general, we need n 2  triangular 
cells and n(n - 1)/2 square cells to construct an n-input triangular 
permutation array which is easily shown to be rearrangeable. 

One way to construct a cellular permutation array with hexagonal 
cells is to use a triangular geometry as shown in Fig. 2(a). The first 
two inputs are tied to the network through the hexagonal cell on the 
left, and afterwards a new input enters the network from left to right 
per each column of hexagonal cells. In general, an n-input triangular 
permutation array can be constructed by using (n2 - 4)/4 cells if n is 
even and n 2 4, and (n2 - 5)/4 if n is odd and n 2 3. If we assume 
that each cell has full connectivity, that is, each of its inputs is 
connected to each of its outputs as shown in Fig. 2@), then it is 
obvious that the first cell can permute its inputs to its outputs in any 
one of 3! = 6 ways. Furthermore, if we suppose that the first n 
columns of cells can permute the first n + 2 inputs to the n + 2 
outputs in any one of (n + 2)! ways, it immediately follows from the 
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hexagonal cellular array. (b) The basic cell structure. 
Fig. 2. A 7-input triangular array with hexagonal cells. (a) A 7 -input 

construction that the first n + 1 columns can permute the first n + 3 
inputs onto the n + 3 outputs in any one of (n + 3)! ways. 

Summarizing the preceding discussion we have the following. 
Theorem 1: Every triangular cellular array constructed using 

triangular, square, or hexagonal cells as in Figs. 1 and 2 is 

The question that remains is to determine what other cellular 
geometries of triangular, square, and hexagonal cells also lead to 
rearrangeable networks. More generally, we need to resolve if 
cellular permutation arrays can be designed more systematically 
These two questions are handled in the following sections. 

11. APPROACH 

rearrangeable. I1 

In general, permutation networks are built from smaller permuta- 
tion networks which are built from still smaller permutation 
networks, etc. In order to mechanize this recursive process in the case 
of cellular permutation arrays, we will use the coset decomposition 
technique introduced in [6]. Let N be a finite set of elements which 
designate the inputs and outputs of a permutation network. The set of 
all permutations on N forms the symmetric group of degree IN1 
which will be denoted by C, where n = INI, and the network will be 
said to be rearrangeable if it realizes all of C,. Without loss of 
genera l i tyweshal l le tN= { 1 , 2 ,  .*.,n}. 

The design technique is based on decomposing C, into right (or 
left) cosets of another symmetric group C, in C, where C, is defined 
over { 1, 2, . . e ,  m } ;  m 5 n .  A right coset of C, in C, is a set of 
permutations C;p = { cr.p:cr E E,} where p is an arbitrary but 
fixed element in C,, and called the leader of the coset. A feft coset is 
defined by interchanging the order of C, and p in the product C, ' p .  
Since the statements about right cosets directly extend to those about 
left cosets, we shall limit our discussion to right cosets. 

Our first remark is that two right cosets are either identical or 
disjoint. This fact provides the basis for decomposing C, into the 
cosets of 8,. More specifically, we have the following fact [6]. 

Theorem 2: Any two permutations in C, lie in different right 
cosets of C, in X, if and only if they map at least one symbol in { m 
+ 1, m + 2, * e ,  n } onto different symbols in N. 

Example: Let n = 6 and m = 5. The symmetric groups C6 and C5 
are then defined, respectively, over { 1 , 2 , 3 , 4 , 5 , 6 }  and { 1 , 2 ,  3 , 4 ,  
5). The permutation maps 
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input cells. 
Fig. 3.  Generating C, from En-,. (a) By using 2-input cells. (b) By using 3- 

and 

1 2 3 4 5 6  
6 1 3 4 5 2  

belong to different cosets of C5 since 6 is mapped to 1 by p and to 2 by 
q, i.e., to different outputs. Note that there are exactly six distinct 
right cosets of C5 in C6 as 6 can be mapped at most to six different 
places in { 1, 2, * * , 6 ) .  Also note that the cosets are distinguished 
only by where input 6 is mapped to, and they do not depend on how 
the images of 1 , 2 , 3 , 4 , 5  are fixed by the permutations which belong 
to a given coset. These six cosets of C5 collectively sum to C6. 11 

The following theorem is easily proved by induction. 
Theorem 3: The total number of distinct right cosets of C, - I in C, 

is n, and that for C, in 1, is n(n - 1) . . .  (m + 1). 
Fig. 3 depicts the realization of C, by the right cosets of C, - with 

2-input and 3-input switching cells. Since input n can be mapped onto 
any one of the n outputs through the small circular cells, all the right 
cosets of in C, can be realized by each of the networks. By 
applying this decomposition recursively upon E,- ,, C, - 2 ,  etc., we 
can realize C, as a cellular permutation array consisting of 2 x 2 or 3 
X 3 cells [5], [6]. For example, the networks shown in Fig. 1 can be 
obtained by recursively decomposing the network in Fig. 3(a) and 
that in Fig. 2 can be obtained by recursively decomposing the 
network in Fig. 3(b). The only remark that needs to be made is that 
the hexagonal cells, except the one to which the first two inputs are 
tied in Fig. 2 ,  need not be fully connected as stated in Section I. 
Following the edge specification in Fig. 3(b), Fig. 4 shows the edges 
needed. The leftmost cell requires full connectivity and hence needs 
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Fig. 4. A 7-input cellular array with specified cell connections. 
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Fig. 5. Generating C, from En-*, 

all nine edges. The cells on the top row have only two inputs and 
hence require four edges each. All other cells have the functionality 
of the small circular cells in Fig. 2(b) and each needs seven edges. 

Using these figures, the total number of edges in an n-input array 
can be shown to be 

7 (?)-3 ( ? )+2whenn i seven  

and 

7 (?)-3 ( ? )+2whenn i sodd .  (1) 

We can use the same technique to design other cellular permutation 
arrays with hexagonal cells. As another example, suppose we use the 
right cosets of Cn-2 to decompose C,. The resultant network then 
consists of two stages where the first stage is assumed to realize all of 
Cn-2 and the second stage generates the n (n - 1) right cosets of C, -2  

in E,. The second stage can be realized by a set of 3-input cells as 
shown in Fig. 5 .  The connections for the small circular cells are 
designed to provide inputs n and n - 1 with paths to any two of the 
outputs with the desired order. At the same time, all the remaining 
inputs can be permuted among themselves by the Z,_z network in the 
first stage, and any of them can be mapped to either of outputs n and 
n - 1 via the small circular cells. It follows that the entire structure 
realizes C,. 

Cellular arrays which result from this kind of decomposition are 
shown in Fig. 6. The number of edges in an n-input network 
constructed this way can be shown to be 

n(n-2) n 
2 

+ 3  -+ 1 when n is even 6 -  
4 
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Fig. 6.  Recursive realization of 8. using hexagonal cells. (a) n is odd. (b) n 

and 

( n ~ - 2 n + 2 ) + ~  ( 'J') 
__ when n is odd. 

4 (3) 

111. PERMUTATION NETWORKS BASED COSET GENERATORS 
In the preceding section, we formed two cellular permutation 

arrays of hexagonal cells using the decompositions of C, into the right 
cosets of C,-1 and Cn-2 .  By direct comparison of the numbers of 
edges in the two networks, it is clear that the decomposition with 
En-* has led to fewer directed edges. This fact raises the question 
whether we can reduce the number of edges even further by working 
with symmetric groups such as e.., etc. Another 
question that should also be raised is about the geometry of the cells 
used in the construction of cellular permutation arrays. There is no 
reason why one should limit the geometry to hexagonal cells, and 
other forms of cells should also be investigated in connection with 
reducing the total number of edges in the network. 

These two degrees of freedom in decomposing C, bring us to the 
concept of what we shall call a generalized mixer or coset 
generator. Consider the right cosets of C, in E,, , and let k = n - m.  
We can view the generation of these cosets as mixing some k new 
inputs with some m old inputs in a way to realize if a network is 
given to permute the m inputs in any one of m! ways. The schematic 
in Fig. 7 illustrates this concept where the top network realizes C, and 
the bottom one generates all of its right cosets. 

In order to describe the realization of C, by a two-stage network, 
we must specify the edges inside the coset generator. First note that 
an edge is needed between every horizontal input and every output of 
the coset generator, since lacking any such edge will prevent the 
realization of some (n - l)! permutations. Since there are k 
horizontal inputs and m + k outputs, this requires a total of (m + 
k)k edges as depicted in Fig. 8. 
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Fig. 7. Realization of C, by a two-stage permutation network. 
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Fig. 8. The edges in the coset generator of a two-stage permutation network. 

As for the vertical inputs it is easy to see that each vertical input of 
the coset generator must be connected to at least k + 1 outputs since 
otherwise we can define a permutation that can block that input from 
being connected to any output by mapping a subset of k horizontal 
inputs to wherever that input is connected. This then implies that the 
combined structure is not rearrangeable. Furthermore, it can also be 
shown that k + 1 edges per each vertical input suffice to make the 
overall network rearrangeable [SI. These k + 1 edges can be 
connected as shown in Fig. 8 among other ways. 

It follows that we need to have ( m  + k )k  + (k  + l )m  edges in all 
for the coset generator. Substituting n - k for m ,  the total number of 
edges can be expressed as 

2kn + n - k -  k Z .  (4) 

We can use this expression to minimize the total number of edges 
in a cellular permutation array obtained by recursively decomposing a 
two-stage permutation network. Let c n , k  denote the number of edges 
in such a cellular permutation array. Using (4), we can write the 
recurrent equation 

C n , k  = n(2 k +  1) - k2  - k +  c n - k ,  k ( 5 )  

where c n - k , k  is the number of edges in the C, or & - k  network. 
Repeating the same decomposition recursively, i.e., decomposing 

into & - 2 k  and that into & - ) k ,  etc., it can be shown that 

where a is the depth of recursion, and C n - t i k , k  is the number of edges 
in the & - a k  subnetwork which is left undecomposed. It can further 
be shown that this recursion has the following closed form solution 
for the boundary condition c k , k  = k2 ,  i.e., a = n /k  - 1 :  

If we define the propagation delay P n , k  of a network as the length of 
the longest path between its inputs and outputs then 

n 
k ’  (8) P n ,  k = + 1 = - 

It also follows from the construction of the coset generator that the 
fan-out Fn,k is given by 

F,,,=k+l (9) 

for all vertical inputs and 

F n , k = n - ( i -  1)k (10) 

for all horizontal inputs of the coset generator in decomposition level 
i ;  1 5 i 5 n /k .  

These results lead to the following statement. 
Theorem 4: In a cellular permutation array which is recursively 

obtained from a two-stage network with k horizontal inputs, C n , k ,  

P n , k ,  and fan-out for horizontal inputs decrease with increasing 
values of k while the fan-out for vertical inputs increases with the 
increasing values of k .  II 

Iv. ANALYSIS OF RESULTS 
To provide a concrete comparison of cellular arrays, we list in 

Table I the total number of edges, propagation delay, and fan-out for 
various cellular permutation arrays described in the paper and the 
networks of Kautz et al. [4] and Bandyopadhyay et al. [l], 
abbreviated, respectively, as KLW and BBC networks. While the 
first six rows refer to specific networks, the last three rows depict 
only a few of many cellular arrays which can be formed by using 
coset generators. In particular, the entries in the last row correspond 
to a complete bipartite graph realization of E,. 

The table reveals that all of the listed networks have O(n2)  edges 
although the number of edges decreases as k increases as stated in 
Theorem 4 and reaches its minimum value at k = n. This may appear 
to be counterintuitive at first since the decomposition in many other 
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TABLE I 
NUMBER OF EDGES FOR VARIOUS CELLULAR NETWORKS 

network designs including the Benes network [ 2 ]  is a common 
method of reducing the network’s cost. The reason for this anomally 
is that the cosets are not optimally coded into the coset generators in 
that all the required connections between the inputs and outputs are 
specified in terms of direct edges. In order to reduce the edge count, 
one needs to code coset leaders so as to maximize the number of 
edges shared between different cosets. The treatment of this coding 
problem will be deferred to another place. 

In contrast, the tradeoff between P n , k  and F n , k  is more noticeable: 
cellular permutation arrays constructed with small cells have O( 1) 
fan-out and O(n) propagation delay while those constructed with 
large coset generators have O(n) fan-out but O( 1) propagation delay. 
This tradeoff is also more intuitive even though the O(n) propagation 
delay for constant fan-out is not necessarily the best possible. In 
principle, one can construct networks with O(log2 n )  propagation 
delay by using switching cells with O(1) fan-out. Nonetheless, this 
construction shares the same goal with our approach in that one uses 
decomposition which causes the propagation delay to increase from 
O(1) to O(log2 n )  (rather than O(n) in our case) to reduce the fan-out 
from O(n) to O(1). It seems that one can also achieve O(log2 n )  
propagation delay with our coset decomposition technique by using a 
more compact coding for the coset leaders. As stated earlier, the 
possibility of such a coding will be explored elsewhere. 

V. CONCLUDING REMARKS 

This paper presented a technique for customizing the design of 
cellular permutation networks. It has been shown that there exists a 
rich spectrum of cellular permutation arrays which results from 
recursive coset decompositions of symmetric groups. Cellular per- 
mutation arrays constructed from 2 x 2 cells and the bipartite graphs 
have been shown to populate the two extreme ends of this spectrum. 
In particular, the bipartite graph realization of the set of all 
permutations is shown to outperform any cellular permutation array 
in number of edges, as well as in propagation delay. Nonetheless its 
O(n) fan-out may be intolerable for large n. In this case, the coset 
decomposition technique can be used to systematically trade the fan- 
out with the propagation delay. 
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On Systolic Contractions of Program Graphs 

WEICHENG SHEN AND A. YAVUZ ORUC 

Abstract-One of the active areas in supercomputer research is 
concerned with mapping programs onto networks of processors. In this 
paper, a variant of the mapping problem, namely, systolic contractions of 
program graphs are considered. The notion of time links is introduced to 
mechanize the contraction process; the timing of information flow 
between processors is modeled in terms of fundamental loop and path 
equations of delays, and optimized using linear programming. 

Index Terms-Fundamental loops of delays, graph contraction, proc- 
essor graph, program graph, systolic array, time links. 

I. INTRODUCTION 

An active area in supercomputing research is concerned with 
designing systematic procedures for mapping algebraic computations 
onto networks of processors. Significant results have been reported in 
the literature, especially about mapping matrix computations onto a 
family of processor networks collectively referred to as systok 
arrays [ I]-[4]. These arrays prompted a considerable interest due to 
their regular structures, adjacency of interconnections between their 
processors, and simplicity of their control. 

Previous efforts on mapping algorithms onto systolic arrays deal 
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